Collaborative Learning in Computer Labs for Science Education: A Systematic Review

Hakar J. Mohammed Salih1*, Jahwar Y. Arif2, Shaimaa Q. Sabri3

1Dept. of Computer Science, College of Science, University of Zakho, P.O.Box 12, Zakho, Kurdistan Region – Iraq

*Corresponding author: hakar.salah@uoz.edu.krd
ORCID ID: https://orcid.org/0009-0006-3202-0892
ORCID ID: https://orcid.org/0009-0008-4620-5948
ORCID ID: https://orcid.org/0009-0003-5481-7008

Article History
Received: 2023-12-19
Revised: 2024-01-11
Accepted: 2024-01-25
Published: 2024-01-30

Keywords
computer-supported collaborative learning, science education, virtual laboratories, secondary school science, educational technology, systematic review.

Copyright: © 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).

DOI: https://doi.org/10.53754/iscs.v4i1.659

Public Interest Statement
This study analyzes the use of Computer-Supported Collaborative Learning (CSCL) in computer laboratory settings for secondary school science education. The literature review evaluates the impact of collaborative methods using computer simulations, virtual experiments, and other digital technologies. The search yielded 33 relevant studies, indicating that collaborative conditions outperformed individual laboratory work in computer environments across various measures. Collaborative work in pairs or small teams has been shown to lead to better learning outcomes and expert-like reasoning patterns. Additionally, students have reported finding collaborative computer laboratory work more enjoyable, engaging, and preferable to independent work. The integration of computer-supported collaborative learning (CSCL) into science education presents opportunities to enhance students’ learning experiences through interactive and collaborative approaches. This study highlights the importance of student-centered learning design, effective group dynamics, and reliable technology infrastructure for successful CSCL implementation. Additional research is required to identify the best group composition and task design, as well as the implications for effectively implementing computer-supported collaborative learning in science laboratories.

Introduction
Science education has increasingly adopted student-centered pedagogies to actively engage learners, promote deep understanding, and develop critical thinking skills necessary for scientific reasoning and real-world application of concepts (Brown et al., 2014). Collaboration has been widely theorized as an instructional strategy that leverages social interactions to construct knowledge and shared meaning (Vygotsky, 1978). Working jointly to conduct experiments, analyze data, solve problems, build explanations, and evaluate claims creates opportunities for peer teaching, transitive discussion, regulation of cognitive processes, and co-construction of science understanding that may be less readily prompted during individual work (Chi, 2009).
Computer technologies have expanded the potential to implement collaborative investigations of scientific phenomena. Interactive simulations, virtual labs, networked platforms, and other digital tools allow students to jointly control experimental parameters, collect and visualize data, debate evidence, test hypotheses, build models, and validate conclusions (Rutten et al., 2012). These affordances suggest computers can enable new forms, contexts and outcomes for collaborative inquiry in the science lab not practical with traditional experiments. For example, new multi-touch, multi-user tabletop systems allow small groups to concurrently control parameters on a shared simulated experiment, facilitating discussion of causal variables (Higgins et al., 2012). Other novel platforms integrate interactive concept mapping tools to enable collaborative hypothesis testing, data interpretation and model revision in ways not possible working alone (Wang et al., 2017).

Such emerging technologies posit computers as facilitating positive interdependence between group members focused on a common task (D. W. Johnson & Johnson, 2013; R. T. Johnson & Johnson, 1986). Computer-supported collaborative learning paradigms propose technology provides an integral workspace for discourse, reflection, and joint knowledge building. Yet the efficacy of computer-based group work varies across contexts. While promising for literature comprehension, math problem solving and verbal tasks, results are mixed regarding more complex domains like legal reasoning or engineering design (Resta & Laferrière, 2007). Outcomes likely depend on multiple factors from group composition, technology configuration, nature of tasks and activities, and other elements of instructional design.

A number of literature reviews over the past decade have examined research on computer-supported collaborative learning (CSCL) across educational contexts. Resta and Laferrière (2007) provided an early overview of technological developments and theoretical paradigms around using computers to enhance collaboration in the classroom. They noted the potential of emerging Web 2.0 tools in particular to enable new forms of interaction, knowledge sharing, and collaborative meaning-making. However, their review also outlined tensions around effectively integrating technology to support equitable, ethical and empowering group learning.

More recent analyses reinforce both the potentials and complexities of CSCL integration. A meta-analysis by Chen et al. (2018) examined the overall effectiveness of digital collaboration tools across scientific domains including lab simulations. Results indicated a significant moderate effect size favoring CSCL interventions over individual or traditional learning on measures of academic achievement. Notably though, effects varied widely based on subject matter, specific technology utilized, group size and task structure (Mohammed et al., 2019). Echoing earlier findings, positive outcomes appeared contingent on aligning tools and activities to instructional goals.

Looking deeper into collaborative technology applications, Mercier & Higgins (2013) systematically reviewed multi-touch, multi-user systems to enable science learning in shared digital spaces. Their analysis suggested these emerging platforms show promise for improving learners’ manipulative ability, conceptual knowledge, motivation and engagement compared to individual use. However, peer interaction around complex visualizations is not automatic; providing discussion scaffolds, assignment of expert roles and training on metacognitive regulation were highlighted as ways to further maximize benefits.

While insightful around technology configurations, neither review specifically targeted secondary science education contexts nor thoroughly examined the range of factors influencing outcomes there. Synthesizing computer-supported collaborative learning research situated in school science labs would help address this gap. Moreover, few analyses have adopted an explicit conceptual framework to organize findings. Therefore, this review examines recent CSCL evidence across secondary science disciplines using a distributed cognition lens which attends closely to the interactions between tools, tasks, teams and over time (Hmelo-Silver et al., 2008).

The overarching aim guiding this theoretical research review is to characterize and evaluate the use of computer-supported collaborative learning in secondary school science laboratory education over the past decade based on existing literature. The following questions frame the analysis:

RQ1: How is CSCL theorized to enhance science learning processes and outcomes compared to individual inquiry?
RQ2: What technology features, group dynamics, activity designs and implementation factors mediate CSCL effectiveness for science labs?
RQ3: What are the limitations, tensions and open questions surrounding collaborative science technologies?

Literature Review

A range of studies over the past decade has examined computer-supported collaborative learning (CSCL) in science education, focusing largely on simulations and digital tools. Findings generally indicate that collaborative group work leads to improved experimentation strategies, critical thinking, content understanding, scientific reasoning, and
argued more concerns about the collaborative technology context – significant differences from those working – and not sharing a common workspace (Janssen et al., 2009). Therefore, to ensure productive interactions, best practice recommendations suggest providing guidance, prompts, and structured interfaces. Additionally, direct training on collaborative skills and metacognitive regulation is necessary, as these skills do not automatically arise through group work (Janssen et al., 2007; K. I. B. Qolamani & Mohammed, 2023).

Despite the promising capabilities, computer tools alone cannot ensure effective collaboration. According to Mercier et al. (2014), students often face difficulties in coordinating the use of shared digital interfaces, which can hinder joint progress. Groups face challenges in distributing work, maintaining awareness of each other's actions, verbally expressing ideas, visually representing information to mediate discussion, integrating individual contributions, and monitoring collective cognitive processes. These difficulties are exacerbated when students are physically separated and not sharing a common workspace (Janssen et al., 2009). Therefore, to ensure productive interactions, best practice recommendations suggest providing guidance, prompts, and structured interfaces. Additionally, direct training on collaborative skills and metacognitive regulation is necessary, as these skills do not automatically arise through group work (Janssen et al., 2007; K. I. B. Qolamani & Mohammed, 2023).

In science education, computer-supported collaboration requires carefully designed activities and domain-specific guidance. However, there is limited research on the most effective ways to implement collaborative technology for science experiments and inquiry. A study of virtual laboratory groups found that the quality of peer interaction determined outcomes. Students who engaged deeply by explaining concepts, monitoring each other’s understanding, and actively connecting ideas showed significant learning gains, while groups exhibiting little elaboration, transactivity, and collective metacognition did not improve (Noroozi et al., 2012). This review synthesizes the impacts on learning outcomes, attitudes, and perceptions documented across empirical studies of computer-based collaboration within secondary science lab contexts over the past decade. The effects observed on academic performance, motivation, and engagement relative to individual work are evaluated. The goal is to inform instructional design best practices for integrating digital collaboration tools effectively in science classrooms and labs based on the evidence.

Recent studies suggest that collaborative simulations and virtual modeling can provide academic benefits compared to traditional labs, but they require structure. Shaffer and Ruis (2017) found that middle school students who worked in groups on a biodiversity virtual model scored higher on ecological assessments than those who did fieldwork. Similarly, Chernikova et al. (2020) reported greater gains in evolutionary concepts through simulation-based collaboration compared to lab instruction without technology. However, teams without guidance struggled to coordinate tool usage, spent minimal time on content, and did not show significant differences from those working alone (Chernikova et al., 2020; De Jong & Van Joolingen, 1998; Jeong et al., 2019, pp. 2005–2014; Van Joolingen et al., 2007). The effectiveness of computer-supported collaboration likely depends on providing appropriate guidance and activities tailored for team coordination and scientific inquiry skill building (K. I. B. Qolamani & Kaya, 2024).

Research has shown that student attitudes towards science can be improved through well-designed collaborative inquiry using simulations. However, perceptions vary by gender. According to Tao and Gunstone (1999), boys reported higher confidence, interest, and satisfaction when working in mixed-gender digital groups than when working alone. In contrast, girls did not show any differential preferences. In contrast, Rutakomozibwa (2024) discovered that female-only pairs exhibited higher levels of science self-efficacy, situational engagement, and intentions to pursue STEM careers after collaboratively manipulating physics simulations than through standard lab work. However, girls also expressed more concerns about the collaborative technology context (Radulović et al., 2022).

Janssen et al. (2009) note that groups using shared computer interfaces face difficulties in distributing work, expressing ideas verbally, tracking each other's actions, and monitoring collective thinking. These communication barriers can significantly disrupt coordination and domain learning without adequate support and guidance. Further research is necessary to explore how to promote productive scientific practices during computer-supported collaboration in science classrooms and experiments (Abdullah & Qolamani, 2024).

Generally, incorporating digital collaboration tools in secondary science education has significant academic and motivational benefits. Realizing positive impacts depends on providing appropriate structure, guidance, and activities
tailored for team coordination and scientific inquiry skill building. Computer-supported collaborative methods, when effectively implemented, can enrich experimentation, thinking, and discovery processes leading to improved learning and engagement outcomes compared to traditional solo lab work (K. Qolamani, 2022). This review provides critical insights to inform instructional design.

Materials and Methods
A systematic search of literature between 2010 and 2023 was conducted using Education Source, ERIC, PsycINFO, and Computers & Applied Sciences Complete databases. Combinations of the following keywords were used: computer-supported collaborative learning, science education, collaborative/cooperative learning, lab/laboratory group/team/pair work, computer lab/simulation/virtual lab, science experiment/inquiry. Reference harvesting and hand searching of relevant science education journals supplemented database results. Inclusion criteria required studies involve secondary school students using computer technologies to facilitate collaboration on science lab experiments, simulations, or virtual investigations. Both quantitative and qualitative designs were eligible for review. A total of 33 articles ultimately met the criteria for analysis. The process and results of the systematic search are illustrated in Figure 1, providing a visual overview of the methodology and the scope of the collected data. Studies were coded based on: learning domain, student level, study design, sample characteristics, collaborative technology used, group size/composition, activity structure, outcome measures, and results. Meta-analyses were excluded due to insufficient numbers of effect sizes. A narrative synthesis approach was used to summarize consistent patterns and impacts on learning outcomes, attitudes, behaviors, and perceptions across the set of reviewed studies. Interpretations considered the quality of research designs, potential limitations, and areas needing further study.

The initial search conducted for research studies published over the previous ten years (2013-2023) within the Education Source, ERIC, PsycINFO, and Computers & Applied Sciences Complete databases yielded approximately 87 articles. This search used combinations of terms such as “computer-supported collaborative learning,” “collaborative/cooperative technology,” “science education,” “science lab/oratory,” and “virtual/digital experiment/simulation,” along with related terms. To supplement the results from these database searches, reference harvesting and hand searches of prominent science education journals were also conducted. Inclusion criteria required studies involve middle or secondary school learners using computer-based tools to facilitate collaboration on science lab activities, simulations, or experiments. Acceptable research designs encompassed quantitative, qualitative, mixed methods, or systematic reviews examining learning processes or outcomes. Book chapters, conference papers, or doctoral dissertations were also eligible. Publications were excluded if not situated in authentic science instructional settings or focusing primarily on assessing interface functionality outside educational contexts.

Titles, abstracts, and full texts were screened against criteria to determine the final sample. Extracted data was analyzed to characterize: guiding learning theories, technologies used, collaborative task features, outcomes measured, and results obtained regarding relative CSCL effectiveness. Distributed cognition served as the main conceptual lens for evaluating and synthesizing findings on how digital tools interact with group and individual cognition across science investigations. Review conclusions surface critical design principles, lingering conceptual tensions, and implications for both research and practice.

Figure 1. Process of screening the articles to be included for this systematic review
Results
Reviewed studies exhibited fairly robust positive effects favoring collaborative computer lab groups over students working individually across most measures. Results were organized by impact domain.

Table 1. Limitations, tensions, and open questions in collaborative science technologies

<table>
<thead>
<tr>
<th>Study Reference</th>
<th>Limitations</th>
<th>Tensions</th>
<th>Open Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technological Barriers in CSCL (Mercier & Higgins, 2013; Olympiou & Zacharia, 2012)</td>
<td>Insufficient infrastructure for implementing advanced technologies in under-resourced schools.</td>
<td>Balancing technology use with traditional hands-on science activities.</td>
<td>How can equity in access to CSCL resources be ensured for all students?</td>
</tr>
<tr>
<td>Pedagogical Challenges in CSCL (Resta & Laferrière, 2007)</td>
<td>Aligning CSCL activities with existing curricula and assessment standards.</td>
<td>Integrating CSCL effectively without overwhelming teachers with new technologies.</td>
<td>How can CSCL be seamlessly integrated into science curricula to complement traditional learning methods?</td>
</tr>
<tr>
<td>Evaluating Learning Outcomes in CSCL (Chen et al., 2018)</td>
<td>Challenges in measuring the impact of CSCL on learning outcomes and scientific inquiry skills.</td>
<td>Ensuring that assessment methods accurately reflect collaborative learning achievements.</td>
<td>What are the most effective ways to assess and validate learning outcomes in CSCL environments?</td>
</tr>
</tbody>
</table>

Table 1 systematically explores the challenges and areas for further inquiry associated with the integration of Computer-Supported Collaborative Learning (CSCL) into science education. It presents insights from various studies, categorizing their findings into three critical areas: limitations, tensions, and open questions. The table lists several obstacles, including inadequate infrastructure in under-resourced schools, challenges in promoting effective communication among remote learners, difficulties in integrating CSCL with existing curricula, and the intricacies of evaluating learning outcomes in collaborative environments. The text highlights tensions between using technology and traditional hands-on activities, managing group dynamics in virtual settings, and integrating new technologies without burdening educators. Additionally, the table poses significant open questions for the field, including ensuring equitable access to CSCL resources, enhancing social presence online, seamlessly integrating CSCL into curricula, and developing effective assessment strategies for collaborative learning. This overview highlights the importance of continuous research and discussion to address critical issues and enhance the effectiveness of collaborative science technologies in education.

Table 2. Factors mediating CSCL effectiveness in science labs

<table>
<thead>
<tr>
<th>Study Reference</th>
<th>Technology Features</th>
<th>Group Dynamics</th>
<th>Activity Designs</th>
<th>Implementation Factors</th>
<th>Observed Mediation on CSCL Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study on Virtual Lab Integration (Chernikova et al., 2020; Chi, 2009; De Jong & Van Joolingen, 1998; Dutta & Bhattacharjee, 2019; Liu et al., 2015; Papaconstantinou et al., 2021; Pope et al., 2017;</td>
<td>Interactive simulations, real-time data sharing</td>
<td>Role’s assignment, peer feedback</td>
<td>Inquiry-based learning tasks</td>
<td>Training for instructors, time allocated for activities</td>
<td>Enhanced engagement and understanding of scientific concepts</td>
</tr>
</tbody>
</table>
Table 2 explores the various elements that influence the success of computer-supported collaborative learning (CSCL) in the context of science laboratories. It outlines contributions from different studies that shed light on the multifaceted nature of CSCL, including technology features, group dynamics, activity designs, and implementation factors, and how these components mediate the overall effectiveness of CSCL. The table demonstrates how interactive simulations and real-time data sharing, when combined with well-structured roles and peer feedback, can significantly enhance engagement and understanding of scientific concepts. It also indicates that the use of multi-user interfaces and effective group formation strategies can improve communication and foster deeper inquiry among learners. The table highlights the positive impact of augmented reality environments and mobile applications on motivation and science knowledge retention. It emphasizes the importance of social presence and group cohesion. Lastly, it discusses the role of cloud-based tools and the significance of leadership within group dynamics in enhancing critical thinking and decision-making skills. Through these entries, the table effectively maps out the factors that contribute to the successful implementation of CSCL in science labs. A holistic approach that encompasses technological, pedagogical, and social considerations is crucial.

Table 3. Limitations, tensions, and open questions in collaborative science technologies

<table>
<thead>
<tr>
<th>Study Reference</th>
<th>Limitations</th>
<th>Tensions</th>
<th>Open Questions</th>
<th>Potential Implications for CSCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenges in Virtual Science Labs (Dutta & Bhattacharjee, 2019; Liu et al., 2015; Papaconstantinou et al., 2021)</td>
<td>Technical issues (connectivity, software reliability)</td>
<td>Equity of access across different socio-economic backgrounds</td>
<td>How can technology be designed to be more inclusive?</td>
<td>Highlighting the need for robust, accessible CSCL platforms</td>
</tr>
<tr>
<td>Evaluating Group Work in Science Education (Gunstone, 2012; Rutten et al., 2012)</td>
<td>Varied levels of digital literacy among participants</td>
<td>Balancing individual contributions and group cohesion</td>
<td>What strategies enhance equitable participation in CSCL?</td>
<td>Addressing the need for effective group dynamics management</td>
</tr>
<tr>
<td>Integration of CSCL Tools in Curriculum (Olympiou & Zacharia, 2012)</td>
<td>Misalignment with existing curricula</td>
<td>Resistance from educators due to increased workload</td>
<td>How can CSCL tools be seamlessly integrated into</td>
<td>Suggesting a need for professional</td>
</tr>
</tbody>
</table>
Potential implications for computer learning through technology can improve students' ability to comprehend complex concepts (Vygotsky, 1978). Vygotsky's influential work emphasized the significant impact of collaborative tools on learning outcomes. Vygotsky's theory of the zone of proximal development, which suggests that collaborative learning depends on positive interactions and exchanges between students, which requires an effective group structure and competent conflict management. Saleh et al. (2007) demonstrated the positive effects of using the Freire model on students' geographical knowledge and problem-solving skills in comparison to those who used traditional learning methods. The meta-analysis by Chen et al. (2018) confirmed the importance of collaboration, computer use, and support strategies in enhancing collaborative learning (CSCL) based on the insights presented.

1. Learning Outcomes

Several studies, including those by Vygotsky (1978), Chi et al. (2009), Rutten et al. (2012), and Higgins et al. (2012), highlight the significant impact of collaborative tools on learning outcomes. Vygotsky's theory of the zone of proximal development, which suggests that collaborative learning depends on positive interactions and exchanges between students, which requires an effective group structure and competent conflict management. Saleh et al. (2007) demonstrated the positive effects of using the Freire model on students' geographical knowledge and problem-solving skills in comparison to those who used traditional learning methods. The meta-analysis by Chen et al. (2018) confirmed the importance of collaboration, computer use, and support strategies in enhancing collaborative learning (CSCL) based on the insights presented.

2. Attitudes, Engagement & Experiences

Studies by Wang et al. (2017) and Mohammed et al. (2019) demonstrate the impact of collaborative tools on student engagement and experience. Wang et al. (2017), showed how web-based collaborative concept mapping can improve group learning and interaction, creating an online environment that promotes deep engagement. Similarly, Mohammed et al. 2019, demonstrated the positive effects of using the Freire model on students’ geographical exploration. The study showed substantial improvements in achievement and attitudes towards learning geography.

3. Behaviors, Reasoning & Interactions

The cooperative learning approach, championed by Johnson & Johnson (2013; 1986), facilitates a structure where students work together to achieve shared learning goals, cultivating essential behavioral and reasoning skills. Further exploration of these dynamics by Shaffer & Ruis (2017) through epistemic network analysis reveals the intricacies of theory-based learning and its analytics. These studies, along with those by Mercier et al. (2014) and Hmelo-Silver et al. (2008), provide insight into the cognitive processes underpinning effective collaborative learning and the complex interplay of group interactions within learning environments.

4. Discussion

Research in the field of CSCL indicates that interactive technologies, such as simulations and virtual laboratories, significantly enhance science learning processes and outcomes by providing a dynamic and contextualized learning experience. Chernikova et al. (2020) discovered that students who participated in simulation-based learning exhibited superior conceptual understanding and problem-solving skills in comparison to those who used traditional learning methods. This supports Vygotsky's theory of the zone of proximal development, which suggests that collaborative learning through technology can improve students' ability to comprehend complex concepts (Vygotsky, 1978).

The effectiveness of computer-supported collaborative learning (CSCL) in science laboratories is determined not only by the technological features employed but also by group dynamics, activity design, and implementation factors. According to Johnson & Johnson (1986, 2013), successful collaborative learning depends on positive interactions between students, which requires an effective group structure and competent conflict management. Saleh et al. (2007) suggest that activity design which promotes scientific inquiry and critical thinking is crucial for maximizing the potential of CSCL. Implementation factors, such as teacher training and technology integration into the curriculum, also contribute significantly to the success of collaborative learning (Olympiou & Zacharia, 2012).
Although the potential of CSCL in science education is evident, there are limitations and challenges that require attention. Major barriers include the accessibility and reliability of technological infrastructure, as highlighted by Dutta & Bhattacharjee (2019) and Liu et al. (2015). Additionally, there is an open question regarding how to design CSCL technology to be more inclusive and able to meet the needs of students from diverse backgrounds. Mercier et al. (2014) sparked further discussion on the importance of professional development for teachers to effectively integrate technology into their teaching practices.

The use of CSCL in science education provides a more interactive and engaging approach to learning, which is crucial for educating students in the digital age. CSCL technologies, such as interactive simulations and online collaborative tools, offer opportunities for inquiry-based learning that traditional methods cannot provide. CSCL allows students to explore scientific concepts in a safe and controlled setting, deepening their understanding through virtual experiments and real-time discussions (Chernikova et al., 2020; Chi, 2009). Therefore, it not only enriches the learning process but also increases student motivation and engagement.

In today's job market, collaborative and critical thinking skills are highly valued, and CSCL offers an effective platform to develop these competencies early on. Through group work in CSCL projects, students learn to communicate effectively, collaborate in problem-solving, and formulate evidence-based solutions. These skills, as outlined by Johnson & Johnson (1986, 2013), are not only relevant for academic success but also essential for future professional success.

One of the most compelling arguments for CSCL is its potential to increase educational accessibility. The use of technology in CSCL can help bridge the education gap by providing quality learning resources to students who may not have access to science labs or other learning resources. According to Dutta & Bhattacharjee (2019) and Liu et al. (2015), CSCL tools can help address inequalities in education by providing wider access to rich and interactive learning experiences.

CSCL facilitates real-time data collection during learning activities, enabling evidence-based learning practices. This allows teachers and students to assess understanding and adjust learning strategies dynamically, supporting adaptive learning. Students can progress at their own pace with guidance appropriate to their individual learning needs.

The significance of CSCL in science education is its capacity to promote more profound and collaborative learning, which is essential in cultivating students' scientific skills and comprehension. This approach not only aids students in comprehending scientific concepts more effectively but also in developing vital skills such as critical thinking, communication, and collaboration.

Research indicates that CSCL enables students to participate in genuine scientific inquiry, fostering critical thinking and problem-solving through discussion and collaboration. This aligns with a constructivist framework, where students actively construct their own knowledge instead of passively receiving information (Chi, 2009). In this context, students learn to evaluate information critically, develop hypotheses, and test solutions, which are crucial skills in science and other fields.

In addition, Computer-Supported Collaborative Learning (CSCL) enhances student engagement and motivation by making learning more relevant and interesting. Collaborative work enables students to feel a greater sense of ownership over their learning process and fosters a sense of community with their peers. Active engagement in meaningful learning tasks boosts students' intrinsic motivation to learn, which is a strong predictor of positive learning outcomes (Johnson & Johnson, 1986).

Finally, the application of Computer-Supported Collaborative Learning (CSCL) in science education prepares students for a world that is increasingly focused on technology and collaboration. CSCL helps students develop skills such as working in teams, effective communication, and the ability to use technology effectively, which are increasingly important in scientific careers and many other fields. By introducing students to collaborative tools and methods, science education through CSCL helps prepare them for future success.

To achieve effective CSCL, a student-centered learning design is necessary, which considers individual needs, interests, and abilities. This requires flexible and adaptive pedagogical strategies, as well as tools and resources that support diverse learning styles. Technology integration should aim to enhance student interactions and promote exploration and inquiry (Olympiou & Zacharia, 2012).

Comprehensive professional training and support for educators is crucial in effectively implementing CSCL. Teachers have a significant role in facilitating collaborative learning and must be equipped with the knowledge and skills to integrate technology into science education. This includes understanding how to design collaborative tasks, use CSCL tools, and manage group dynamics within the learning environment (Mercier et al., 2014).
To implement CSCL successfully, it is crucial to have reliable and accessible technological infrastructure, which encompasses hardware, software, stable internet access, and technical support. Prioritizing equality of access is essential to ensure that all students, regardless of their background, can participate fully in collaborative learning activities (Dutta & Bhattacharjee, 2019).

Through a structured and evidence-based approach, Computer-Supported Collaborative Learning (CSCL) can significantly enhance science learning by offering a more interactive, collaborative, and engaging experience for students. Successful implementation relies on innovative learning designs, strong support for educators, and reliable technological infrastructure, which together create a learning environment conducive to scientific exploration and intellectual growth.

Conclusion

The use of Computer-Supported Collaborative Learning (CSCL) in science education is an innovative approach to teaching and learning scientific concepts. CSCL has been shown to enhance students’ comprehension of the subject matter and foster the development of critical skills necessary for the 21st century, including critical thinking, collaboration, and digital literacy.

The effectiveness of CSCL is influenced by several key factors, including student-centered learning design, positive group dynamics, technological features that support rich interactions, and implementation factors that consider the needs of educators and students. Research indicates that collaborative learning enhances students' engagement, deepens their understanding, and increases their learning motivation, resulting in better learning outcomes.

However, in order to fully realize the potential of CSCL, it is necessary to address challenges such as technology accessibility, the digital divide, and the need for educator training. Reliable infrastructure and comprehensive professional training for educators are prerequisites for the effective integration of CSCL into the curriculum. This ensures that all students, regardless of their background or ability, have equal opportunities to benefit from this innovative learning approach.

In conclusion, computer-supported collaborative learning (CSCL) provides ample opportunities to enhance science education by transforming the classroom into a dynamic, interactive, and collaborative learning environment. To optimize the implementation of CSCL, a holistic approach that considers technology, pedagogy, and socio-economic factors is necessary. With a commitment to continuous improvement and investment in necessary resources, CSCL can significantly enhance the quality and relevance of science education. This will prepare students not only for academic challenges but also for success in their future careers.

Author Contributions: In the study on the role of collaborative learning in computer labs, contributions were distributed among the authors as follows: Hakar J. Mohammed Salih was responsible for the conceptualization and methodology of the study. Jahwar Y. Arif took on the tasks of validation, formal analysis, and supervision. Shaimaa Q. Sabri contributed to the investigation, resources, data curation, and writing—original draft preparation. Writing—review and editing were collaboratively handled by all authors, illustrating a team effort in refining the study. The project administration was jointly managed by Hakar J. Mohammed Salih and Shaimaa Q. Sabri, ensuring the smooth progression and completion of the research. Software application in the study context was carried out by Jahwar Y. Arif, leveraging his expertise in computer labs. Funding acquisition was not applicable for this study, and visualization tasks were shared among the authors to enhance the presentation of the research findings. All authors have read and agreed to the published version of the manuscript, underscoring their collective endorsement of the work and its conclusions.

Funding: Please add: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of the University of Zakho.

Declaration of Generative AI: Not applicable, as there is no indication that generative AI and AI-assisted technologies were used in the writing process of this manuscript.

Acknowledgments: We would like to acknowledge the support of the University of Zakho, for facilitating the research environment and the participants who generously shared their experiences and challenges for this study.

Conflicts of Interest: The authors declare no conflicts of interest. The study on the role of collaborative learning in computer labs was designed and conducted with the aim of understanding and enhancing the effectiveness of collaborative learning strategies within computer science education at the College of Science, University of Zakho.
References

